
CS152: Computer Systems Architecture
Circuits Recap – Digital Why And How

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Course outline

❑ Part 1: The Hardware-Software Interface
o What makes a ‘good’ processor?
o Assembly programming and conventions

❑ Part 2: Recap of digital design
o Combinational and sequential circuits
o How their restrictions influence processor design

❑ Part 3: Computer Architecture
o Computer Arithmetic
o Simple and pipelined processors
o Caches and the memory hierarchy

❑ Part 4: Computer Systems
o Operating systems, Virtual memory

The digital abstraction

“Building Digital Systems in an Analog World”

Source: MIT 6.004 2019 L05

The digital abstraction

❑ Electrical signals in the real world is analog
o Continuous signals in terms of voltage, current,

❑ Modern computers represent and process
information using discrete representations
o Typically binary (bits)

o Encoded using ranges of physical quantities
(typically voltage)

Source: MIT 6.004 2019 L05

Aside: Historical analog computers

❑ Computers based on analog principles have existed
o Uses analog characteristics of capacitors, inductors,

resistors, etc to model complex mathematical formulas
• Very fast differential equation solutions!

• Example: Solving circuit simulation would be very easy if we had
the circuit and was measuring it

❑ Some modern resurgence as well!
o Research on sub-modules performing fast non-linear

computation using analog circuitry

Polish analog computer AKAT-1 (1959)
Source: Topory

Why are digital systems desirable?

Hint: Noise

Using voltage digitally

❑ Key idea
o Encode two symbols, “0” and “1” (1 bit) in an analog space

o And use the same convention for every component and wire in system

Source: MIT 6.004 2019 L05

Fuzzy area!

VL and VH are enforced during component design and manufacture

Handling noise

❑ When a signal travels between two modules, there will be noise
o Temperature, electromagnetic fields, interaction with surrounding modules, …

❑ What if Vout is barely lower than VL, or barely higher than VH?
o Noise may push the signal into invalid range

o Rest of the system runs into undefined state!

❑ Solution: Output signals use a stricter range than input

Source: MIT 6.004 2019 L05

Voltage Transfer Characteristic

❑ Example component: Buffer
o A simple digital device that copies its input value to its output

❑ Voltage Transfer Characteristic (VTC):
o Plot of Vout vs. Vin where each measurement is

taken after any transients have died out.

o Not a measure of circuit speed!
• Only determines behavior under static input

❑ Each component generates a new, “clean”
signal!
o Noise from previous component corrected

“forbidden zone”

Source: MIT 6.004 2019 L05

Benefits of digital systems

❑ Digital components are “restorative”
o Noise is cancelled at each digital component

o Very complex designs can be constructed on the abstraction of digital behavior

❑ Compare to analog components
o Noise is accumulated at each component

o Lay example: Analog television signals! (Before 2000s)
• Limitation in range, resolution due to transmission noise and noise accumulation

• Contrary: digital signals use repeaters and buffers to maintain clean signals

Source: “Does TV static have anything to do with the Big Bang?” How it works, 2012

CS152: Computer Systems Architecture
Digital Circuit Design Recap

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Combinational and sequential circuits

❑ Two types of digital circuits

❑ Combinational circuit
o Output is a function of current input values

• output = f(input)

• Output depends exclusively on input

❑ Sequential circuit
o Have memory (“state”)

• Output depends on the “sequence” of past inputs

Combinational logic

State

What constitutes combinational circuits

1. Input

2. Output

3. Functional specifications
o The value of the output depending on the input

o Defined in many ways!

o Boolean logic, truth tables, hardware description languages,

4. Timing specifications
o Given dynamic input, how does the output change over time?

We’ve done this in CS151

Hinted at in CS151

Timing specifications of
combinational circuits

❑ Propagation delay (tPD)
o An upper bound on the delay from valid inputs to valid outputs

o Restricts how fast input can be consumed
(Too fast input → output cannot change in time, or undefined output)

A good circuit has low tPD

→ Faster input
→ Higher performance

Source: MIT 6.004 2019 L05

How do we get low tPD?

Timing specifications of
combinational circuits

❑ Contamination delay (tCD)
o A lower bound on the delay between input change to output starting to change

• Does not mean output has stable value!

o Guarantees that output will not change within this timeframe regardless of what
happens to input

Source: MIT 6.004 2019 L05

Example: Inverter

The basic building block:
CMOS transistors (“Complementary Metal–Oxide–Semiconductor”)

“Field-Effect Transistor”

Source: MIT 6.004 2019 L09
Everything is built as a network of transistors!

The basic building block:
CMOS FETs

❑ Remember CS151 – FETs come in two varieties, and are composed to
create Boolean logic

nFET

pFET

CMOS NAND Gate
Source: MIT 6.004 2019 L09

Making chips out of transistors…?

Intel 4004 Schematics
drawn by Lajos Kintli and Fred Huettig
for the Intel 4004 50th anniversary project

The basic building block 2:
Standard cell library

❑ Standard cell
o Group of transistor and interconnect structures that provides a boolean logic

function
• Inverter, buffer, AND, OR, XOR, …

o For a specific implementation technology/vendor/etc…

o Also includes physical characteristic information

❑ Eventually, chips designs are expressed as a
group of standard cells networked via wires
o Among what is sent to a fab plant

Example:

Source: MIT 6.004 2019 L06

Various components have different delays and area!

The actual numbers are not important right now

Back to propagation delay of
combinational circuits

❑ A chain of logic components has additive delay
o The “depth” of combinational circuits is important

❑ The “critical path” defines the overall propagation delay of a circuit

Example: A full adderSource: en:User:Cburnett @ Wikimedia

Critical path of three components
tPD = tPD(xor2)+tPD (and2)+tPD (or2)

Sequential circuits

❑ Combinational circuits on their own are not very useful

❑ Sequential logic has memory (“state”)
o State acts as input to internal combinational circuit

o Subset of the combinational circuit output updates state

Abstract model of
Sequential circuits

Slightly more realistic
Sequential circuit

Synchronous sequential circuits

❑ “Synchronous”: all operation are aligned to a shared clock signal
o Speed of the circuit determined by the delay of its longest critical path

o For correct operation, all paths must be shorter than clock speed

o Either simplify logic, or reduce clock speed!

Timing constraints of state elements

❑ Synchronous state elements also add timing complexities
o Beyond propagation delay and contamination delay

❑ Propagation delay (tPD) of state elements
o Rising edge of the clock to valid output from state element

❑ Contamination delay (tCD)
o State element output should not change for tCD after clock change

❑ Setup time (tSETUP)
o State element should have held correct data for tSETUP before clock edge

❑ Hold time (tHOLD)
o Input to state element should hold correct data for tHOLD after clock edge

Timing behavior of state elements

❑ Meeting the setup time constraint
o “Processing must fit in clock cycle”

o After rising clock edge,

o tPD(State element 1) + tPD(Combinational logic) + tSETUP(State element 2)

o must be smaller than the clock period

Data from here
…must reach here

…before the next clock Otherwise, “timing violation”

Timing behavior of state elements

❑ Meeting the hold time constraint
o “Processing should not effect state too early”

o After rising clock edge,

o tCD(State element 1) + tCD(Combinational logic)

o must be larger than tHOLD(State element 2)

tCD(State element 1) tCD(Combinational logic)

tHOLD(State element 2)

= Guaranteed time output will not change

Real-world implications

❑ Constraints are met via Computer-Aided Design (CAD) tools
o Cannot do by hand!

o Given a high-level representation of function, CAD tools will try to create a
physical circuit representation that meets all constraints

❑ Rule of thumb: Meeting hold time is typically not difficult
o e.g., Adding a bunch of buffers can add enough tCD(Sequential Circuit)

❑ Rule of thumb: Meeting setup time is often difficult
o Somehow construct shorter critical paths, or

o reduce clock speed (We want to avoid this!)

How do we create shorter critical paths for the same function?

Simplified introduction to placement/routing

❑ Mapping state elements and combinational circuits to limited chip space
o Also done via CAD tools

o May add significant propagation delay to combinational circuits

❑ Example:
o Complex combinational circuits 1 and 2 accessing state A

o Spatial constraints push combinational circuit 4
far from state A

o Path from B to A via 4 is now very long!

❑ Rule of thumb:
o One comb. should not access too many state

o One state should not be used by too many comb.

B

3 A

4

2

1

Looking back:
Why are register files small?

❑ Why are register files 32-element? Why not 1024 or more?

x0

x1

x2

x31

…

M
u

x

D
em

u
x

write select read select Hierarchical design of a
8x1 multiplexer

Propagation delay increases with more registers!

Real-world example

❑ Back in 2002 (When frequency scaling was going strong, but larger FETs)
o Very high frequency (multi-GHz) meant:

o … setup time constraint could tolerate

o … up to 8 inverters in its critical path

o Such stringent restrictions!

Can we even fit a 32-bit adder there? No!

